Tuesday, 06 April 2021 02:13

Authored by Monica Showalter via, Has CBS skidded down to straight-opinion activism? Sure looks like it. On April 2, they came out with a supposedly straight-news...


Sunday, 28 March 2021 22:19

7/20/2019 -- Whatever your bias or special interest, it’s important to understand what’s going on here which is beyond markets and politics.  The world is changing at a pace so fast few can...


Sunday, 28 March 2021 22:17

If you had told me 30 days ago, that 90% of the population was ordered to stay in their homes, begging for martial law – I would have told you it’s impossible. Fast forward to today, when there is...

Alternative History

Alternative History

Friday, 28 May 2021 03:08

Deep in the heart of northern Kansas, researchers excavated farmland that used to be under the ocean and ended up finding a brand new species of shark that lurked beneath the surface around 91...

Alternative History

Thursday, 27 May 2021 23:16

Commentary by Brian Shilhavy Altiyan Childs is a former Australian Rock musician, and a former Freemason. In 2010 he won The X Factor talent show award, which boosted his career in music to...

Alternative History

Thursday, 27 May 2021 19:17

Whenever we write about the Inner Earth, aka Hollow Earth, and the numerous ancient cultures that mention a place within our planet where there is life, we encounter hostility. But why? Is it...

Disruptive Fare

Disruptive Fare

Friday, 10 January 2020 14:37 - 1/10/2020 -- A number of philosophies and the science of Quantum Physics, as well as Intelligence Analysis; have a common expression "There are no accidents" - a phrase abused...

Disruptive Fare

Tuesday, 03 December 2019 00:14

(( - 12/9/2019 -- Somewhere, USA -- For those who value knowledge, this comes as a sad surprise.  Wikipedia once was a free and open source encyclopedia, where anyone could...

Disruptive Fare

Monday, 02 December 2019 00:34  

Geo Engineering

Geo Engineering

Thursday, 27 May 2021 19:19

It was reported this month that the top climate change scientist for the National Oceanic and Atmospheric Administration has received $4 million in funding from Congress along with...

Geo Engineering

Thursday, 27 May 2021 19:18

by Clare Swinney, guest Among a recently-released assortment of declassified reports of sightings of Unidentified Flying Objects (UFOs) from New Zealand, dating from 1952-2009, were letters...

Geo Engineering

Thursday, 27 May 2021 02:47

Torrential rains, howling winds, and tidal surges from Cyclone Yaas wreak havoc in eastern India as the virus-stricken country experiences its second cyclone in less than two weeks,...



Monday, 31 May 2021 02:35

On December 30th, 2019, a 34-year old doctor in China, Li Wenliang, wrote his colleagues on the website Weibo that he had found a new virus infection that was very contagious. He warned in a chat...


Sunday, 30 May 2021 03:55

Ivermectin, an anti-parasitic drug placed the same radioactive category as Hydroxychloroquine (HCQ) for the treatment of COVID-19, has reemerged as a promising treatment in the battle to...


Friday, 28 May 2021 02:55

by Sven-Allan Johansson; auto translated from Swedish by SD Background to the new Nuremberg Trials 2021: A large team of more than 1,000 lawyers and over 10,000 medical...

Not Politics

Not politics

Monday, 31 May 2021 02:34

Investigative journalist Whitney Webb told Children’s Health Defense Chairman Robert F. Kennedy, Jr., on the “RFK Jr. The Defender Podcast,” that vaccine passports are part of a global plan to...

Not politics

Saturday, 29 May 2021 01:08

Authored by Zachary Stieber via The Epoch Times, A judge in Georgia told parties in an election integrity case on May 27 that a previously scheduled meeting at a ballot storage...

Not politics

Saturday, 29 May 2021 01:06

by Ben Bartee via The Daily Bell “There is nothing wrong with America the Beautiful that cannot be fixed, and fixed quick, by restoring integrity to how we self-govern.  Election fraud is...

As the threats of climate change grow, we’re all likely to hear more and more about the possibilities, and dangers, of geoengineering. Here’s what it means.
August 9, 2019
Giant ash cloud from the eruption of Mount Pinatubo, 1991 towering above farms and agricultural lands in the Philippines.

It’s becoming clear that we won’t cut carbon emissions soon enough to prevent catastrophic climate change. But there may be ways to cool the planet more quickly and buy us a little more time to shift away from fossil fuels.

They’re known collectively as geoengineering, and though it was once a scientific taboo, a growing number of researchers are running computer simulations and proposing small-scale outdoor experiments. Even some legislators have begun discussing what role these technologies could play (see “The growing case for geoengineering”).

But what is geoengineering exactly?

Traditionally, geoengineering has encompassed two very different things: sucking carbon dioxide out of the sky so the atmosphere will trap less heat, and reflecting more sunlight away from the planet so less heat is absorbed in the first place.

Read earlier stories in this series

  • Harvard scientists moving ahead on plans for atmospheric geoengineering experiments

    The climate researchers intend to launch a high-altitude balloon that would spray a small quantity of reflective particles into the stratosphere.

  • How one climate scientist combats threats and misinformation from chemtrail conspiracists

    Harvard geoengineering researcher David Keith explains when to feed the trolls and when not to.

  • Geoengineering is very controversial. How can you do experiments? Harvard has some ideas.

    A new committee will consider the wisdom of outdoor experiments, and may set the stage for more.

The first of these, known as “carbon removal” or “negative emissions technologies,” is something that scholars now largely agree we’ll need to do in order to avoid dangerous levels of warming (see “One man’s two-decade quest to suck greenhouse gas out of the sky”). Most no longer call it “geoengineering”—to avoid associating it with the second, more contentious branch, known as solar geoengineering.

This is a blanket term that includes ideas like setting up sun shields in space or dispersing microscopic particles in the air in various ways to make coastal clouds more reflectivedissipate heat-trapping cirrus clouds, or scatter sunlight in the stratosphere.

The word geoengineering suggests a planetary-scale technology. But some researchers have looked at the possibility of conducting it in localized ways as well, exploring various methods that might protect coral reefs, coastal redwoods, and ice sheets.

Where did the idea come from?

It’s not a particularly new idea. In 1965, President Lyndon Johnson’s Science Advisory Committee warned it might be necessary to increase the reflectivity of the Earth to offset rising greenhouse-gas emissions. The committee went so far as to suggest sprinkling reflective particles across the oceans. (It’s revealing that in this, the first ever presidential report on the threat of climate change, the idea of cutting emissions didn’t seem worth mentioning, as author Jeff Goodell notes in How to Cool the Planet.)

But the best-known form of solar geoengineering involves spraying particles into the stratosphere, sometimes known as “stratospheric injection” or “stratospheric aerosol scattering.” (Sorry, we don’t come up with the names.) That’s in part because nature has already demonstrated it’s possible.

4-panel Illustration of geoengineering
Evan Cohen

Most famously, the massive eruption of Mt. Pinatubo in the summer of 1991 spewed some 20 million tons of sulfur dioxide into the sky. By reflecting sunlight back into space, the particles in the stratosphere helped push global temperatures down about 0.5 °C over the next two years.

And while we don’t have precise data, huge volcanic eruptions in the distant past had similar effects. The explosion of Mount Tambora in Indonesia in 1815 was famously followed by the “Year Without a Summer” in 1816, a gloomy period that may have helped inspire the creation of two of literature’s most enduring horror creatures, vampires and Frankenstein’s monster.

Soviet climatologist Mikhail Budyko is generally credited as the first to suggest we could counteract climate change by mimicking this volcanic phenomenon. He raised the possibility of burning sulfur in the stratosphere in a 1974 book.

In the following decades, the concept occasionally popped up in research papers and at scientific conferences, but it didn’t gain much attention until the late summer of 2006, when Paul Crutzen, a Nobel Prize–winning atmospheric chemist, called for geoengineering research in an article in Climatic Change. That was particularly significant because Crutzen had won his Nobel for research on the dangers of the growing ozone hole, and one of the known effects of sulfur dioxide is ozone depletion.

In other words, he thought climate change was such a threat that it was worth exploring a remedy he knew could pose other serious dangers.

So could geoengineering be the solution to climate change, relieving us of the hassle of cutting back on fossil fuels?

No—although the idea that it does is surely why some energy executives and Republican legislators have taken an interest. But even if it works (on which more below), it’s at best a temporary stay of execution.

It does little to address other climate dangers, notably including ocean acidification, or the considerable environmental damage from extracting and burning finite fossil fuels. And greater levels of geoengineering may increase other disruptions in the climate system, so we can’t just keep doing more and more of it to offset ever rising emissions.

How is geoengineering being researched?

In the years since Crutzen’s paper, more researchers have studied geoengineering, mainly using computer simulations or small lab experiments to explore whether it would really work, how it might be done, what sorts of particles could be used, and what environmental side effects it might produce.

The computer modeling consistently shows it would reduce global temperatures, sea-level rise, and certain other climate impacts. But some studies have found that high doses of certain particles might also damage the protective ozone layer, alter global precipitation patterns, and reduce crop growth in certain areas.

Others researchers have found that these risks can be reduced, if not eliminated, by using particles other than sulfur dioxide and by limiting the extent of geoengineering.

But no one would suggest we’ve arrived at the final answer on most of these questions. Researchers in the field believe we need to do a lot more modeling work to explore these issues in greater detail. And it’s also clear that simulations can only tell us so much, which is why some are proposing small outdoor experiments.

Has anybody conducted real-world geoengineering experiments?

In 2009, Russian scientists conducted what is believed the be" style="box-sizing: border-box; border: 0px; font-style: inherit; font-variant: inherit; font-weight: 400; font-stretch: inherit; line-height: inherit; font-family: inherit; font-size: inherit; margin: 0px; padding: 0px; vertical-align: baseline; background: transparent; color: inherit; text-decoration: underline; display: inline;">the first outdoor geoengineering experiment. They mounted aerosol generators on a helicopter and car and sprayed particles as high as 200 meters (660 feet). The scientists claimed, in a paper published in Russian Meteorology and Hydrology, that the experiment had reduced the amount of sunlight that reached the surface. (It’s worth noting that Yuri Izrael, a climate skeptic and scientific advisor to Vladimir Putin, was the lead author of the study as well as the editor of the journal.)

One of the first attempts to conduct an experiment that was openly advertised in advance as geoengineering-related, known as the SPICE project, was ultimately scrapped. The idea was to pump particles up a pipe to a high-altitude balloon that would scatter them in the stratosphere. But the proposal prompted a public backlash, particularly after it emerged that some of the researchers had already applied for patents on the technology.

Scientists at Harvard have proposed what could be the next and most formal geoengineering experiment to date. They hope to launch a balloon equipped with propellers and sensors that would spray a tiny amount of calcium carbonate in the stratosphere. The aircraft would then fly through the plume and attempt to measure things like how broadly the particles disperse, how they interact with other gases, and how reflective they are. The team has already raised the funds, put an advisory committee in place, contracted with a balloon company, and begun development work on the necessary hardware. (See “Geoengineering is very controversial. How can you do experiments? Harvard has some ideas.”)

Meanwhile, researchers at the University of Washington—in partnership with Xerox’s Palo Alto Research Center and other groups—have proposed small-scale experiments as part of a larger research program to learn more about the potential of “marine cloud brightening.” The idea, first floated by the British physicist John Latham in 1990, is that spraying tiny salt particles from seawater toward low-lying clouds above the sea could form additional droplets, increasing the surface area—and thus reflectivity—of the clouds. The team is currently raising funds to develop a “cloud-physics research instrument” and test it by spraying a small amount of sea-salt mist somewhere off the US Pacific Coast.

There have also been some early efforts in other areas of geoengineering, including more than a dozen so-called iron-fertilization experiments in the open ocean, according to Nature. The concept there is that dumping iron into the water would stimulate the growth of phytoplankton, which would pull carbon dioxide out of the air. But scientists have questioned how well it really works, and what sorts of side effects it could have on ocean ecosystems. Environmental groups and others also criticized early efforts in this area, arguing that they went ahead without proper permission or scientific oversight.

Is anybody actually doing geoengineering?

Researchers stress that these experiments aren’t actual geoengineering: the amounts of material involved are far too small to alter global temperatures. Indeed, despite a vast and varied array of online conspiracy theories to the contrary, feverishly spread by chemtrails truthers, nobody is conducting planetary-scale geoengineering today.

At least, nobody is on purpose. You could argue that burning massive amounts of fossil fuels is a form of geoengineering, just an inadvertent and very dumb one. And we also know that sulfur pollution from coal plants and ships has likely reduced global temperatures. Indeed, new UN rules requiring ships to emit less sulfur might actually raise temperatures slightly (see “We’re about to kill a massive, accidental experiment in reducing global warming”).

There’s also a long and rich history of efforts in the US and China, among other places, to seed clouds with particles to increase snow or rainfall (see “Weather engineering in China”). But the results are mixed, and local weather modification is a far cry from attempting to twist the knob on the entire climate system.

Isn’t geoengineering controversial?


There are real concerns about conducting, researching, or even discussing geoengineering.

Critics argue that openly talking about the possibility of a technological “solution” to climate change (it’s not a solution, as explained above) will ease pressure to address the root cause of the problem: rising greenhouse-gas emissions. And some believe that moving forward with outdoor experiments is a slippery slope. It could create incentives to conduct ever bigger experiments, until we’re effectively doing geoengineering without having collectively determined to.

Comments on What is geoengineering—and why should you care?

Be the first to comment
Please login to comment